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A family of smooth invariant tori of a Hamiltonian system can be parameterized by the values of the actions
or the frequencies. These parameterizations are related by the action-frequency map. The purpose of this paper
is to show that when the action-frequency map is degenerate, it signals a homoclinic bifurcation. Remarkably,
the nonlinear properties of this homoclinic bifurcation to invariant tori are determined by the curvature of the
action-frequency map. A homoclinic angle is also generated which is analogous to a Hannay-Berry phase shift.
The theory is constructive and so can usefully be combined with computation. Some implications for quanti-
zation, and the generation of solitary waves are also discussed.
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I. INTRODUCTION

Invariant tori are a ubiquitous and important class of so-
lutions of Hamiltonian dynamical systems [1,2]. For ex-
ample, stable equilibrium points and stable periodic orbits
are surrounded by invariant tori, and tori are typical solutions
of integrable systems. Invariant tori are also fundamental in
quantization [ 1,3]. In this paper a mechanism for the genera-
tion of a homoclinic orbit, which is bi-asymptotic to the
torus, is presented. This bifurcation is of interest for several
reasons. It shows how the geometry of the action-frequency
map, which is a central part of any constructive theory, en-
codes information about homoclinic bifurcation. It has impli-
cations for semiclassical quantization. Both the quantization
of tori and the quantization of homoclinic orbits have been
extensively studied (cf. [3—7] and references therein), and the
quantum implications of the saddle-center bifurcation of pe-
riodic orbits has been studied [6]. The theory of this paper
provides a mechanism for the transition between tori,
through a saddle-center bifurcation, to a homoclinic orbit.
The theory is also of interest in pattern formation. It gives a
mechanism for the creation of toral dark solitary waves (an
example is given in Sec. VII).

In the classical setting, orbits homoclinic to invariant tori
have been studied (e.g., [8—10]), but these studies do not
consider the mechanism for creating the homoclinic orbit. An
early work on the bifurcation of homoclinic orbits through
saddle-center bifurcation of invariant tori is HanBmann [11];
for a recent survey and follow-up references, see the recent
book [12]. Take a (2n+2)-dimensional phase space with co-
ordinates (6,,...,6,,1;,....1,,q,p). HanBmann takes the
standard Hamiltonian function for the saddle-center bifurca-
tion

b
ap® + 5q3—>\q,

with parameters a,b,\ and attaches a nondegenerate torus
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H(g.p.])= - I+a(w)p*+ @thq, (1)

allowing the parameters a,b to depend on the frequency vec-
tor. He then proceeds to study the effect of perturbations on
the persistence of the invariant tori. A key hypothesis in this
work (and all follow-up work) is that the tori are nondegen-
erate.

In this paper a mechanism is identified based on
degeneracy of the invariant tori. No external parameters are
required.

Assume throughout the paper that the dimension of the
phase space is 2n+2 as this is the lowest dimension that the
phenomena occurs for a torus of dimension n.

II. GEOMETRY OF THE ACTION-FREQUENCY MAP

With the appropriate smoothness, n-dimensional tori natu-
rally arise in an n-parameter family. It will be assumed
throughout that the Hamiltonian function is sufficiently
smooth and the system is integrable (or if not integrable,
normal form transformations have been carried out to suffi-
cient order such that the leading-order truncated system is
integrable; nonintegrability and persistence are briefly dis-
cussed in Sec. VI).

In the neighborhood of nondegenerate points, the tori can
be parameterized by the frequencies (w,,...,w,) or the ac-
tions (I, ...,I,). These two parameterizations are related by
the action-frequency map /(w):=[I|(w), ... ,I,(w)] (cf. Sec.
6.1 of [1]). The torus is said to be nondegenerate when

det[DI(w)] # 0, (2)
where DI(w) is the Jacobian
o, o,
Dl(w):=| : . = | (3)
al, al,

Note that the Kolmogorov-Arnold-Moser (KAM) nondegen-
eracy condition is normally stated for the inverse map:
det[Dw(7)]# 0 and the two conditions are equivalent at non-
degenerate points.
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FIG. 1. (Color online) Example with n=3 showing a singular
surface in frequency space and its image under /(w) in action space.

The action-frequency map is degenerate when
det[DI(w)] = 0. 4)

Assume simple degeneracy throughout (rank=rn—1). Then
Eq. (4) defines a surface of dimension n—1 in frequency
space—the frequency hypersurface. An example with n=3 is
shown in Fig. 1. There will also be a hypersurface in action
space defined by the image of I(w), and it will be called the
action hypersurface.

The main result of this paper is to show that there is a
homoclinic bifurcation—in phase space—for values of the
action near the action hypersurface. To show this, the geom-
etry of the action and frequency hypersurfaces need to be
studied in more detail.

Figure 1 shows a normal vector n to the action hypersur-
face. It is the eigenvector associated with the zero eigenvalue
of the Jacobian

DI(w)n=0. (5)

To see the geometric interpretation of n, note that tangent
vectors in frequency space, denoted by w, are related to tan-

gent vectors in action space, I, by

I=DIl(w)o.

Hence, since DI(w) is symmetric, it follows that m is perpen-

dicular to 7, and so is normal to the action hypersurface.

A surprising result is that the second derivative of the
action-frequency map, in the following form, appears in an
important way in determining the properties of the ho-
moclinic bifurcation. Not any second derivative, but the sec-
ond derivative in the direction n—that is, transverse to the
action hypersurface: define

d2
K= 12 A(w + sn), (6)
s=0
where
A(w) :=n-[l(w) - (w))], (7)

where w, is any point on the singular hypersurface. This
latter definition is taken with n fixed at the point w, on the
singular hypersurface. A(w) is a measure of the distance
away from the singular hypersurface in action space.
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So far, just the geometry of the mapping I(w) has been
studied. In order to relate this geometry to the homoclinic
bifurcation, it needs to be connected to the dynamics. A key
ingredient in this connection is Percival’s variational prin-
ciple for invariant tori [13].

III. HAMILTONIAN SYSTEMS AND INVARIANT TORI
Consider a nonlinear autonomous Hamiltonian system

oH oH (q
q9="- P:=-"-

p aq p
where H(q,p) is a given Hamiltonian function. Attention is
restricted to (2n+2)-dimensional phase space as it is the
lowest dimension in which the bifurcation occurs. Moreover,
to avoid technicalities with small divisors, assume that the
system is integrable.

Consider a n-parameter family of invariant tori,

) < R2”+2, (8)

[a(0).p(1)] = [4(6, ). (6, w)], )
with frequencies wy, ..., w,,
0:= (015 e ,0;1)9
01 = (l)jf‘l' d},

where ¢’ is an arbitrary phase shift, and (§,p) are
2r-periodic functions in each ;. Substituting Egs. (9) and
(8) leads to

9p OH <
SeR My

CUJ = .
=1 6, dq =

o4 oH
w22 (10)
196, dp

These equations can be interpreted as the Euler-Lagrange
equation for Percival’s variational principle [13]. Define ac-
tions

o6
I(w =——4; p- —-do, 11

where

2 2
f | f0)do,---de,, (12)

0 0

5£f(0)d9== o

and define H to be the average of H(q,p) over the torus.
Then Eq. (10) is the Euler-Lagrange equation for

n
L(4,p,») =H - E w;l;,

j=1
with wq,...,w, treated as Lagrange multipliers. A standard
result in the theory of Lagrange multipliers is that the con-
strained variational principle is nondegenerate precisely
when condition (2) is satisfied with /; interpreted as values of
the constraint sets and wi,...,w, interpreted as Lagrange
multipliers. This connects Percival’s variational principle
with geometric condition (2).

Define the second variation in Percival’s variational prin-

ciple by
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n

L(6,0) := D*H - X w;D’I,.
j=1

Then the linearization of Eq. (8) about the family of invariant
tori can be written in the following form:

Ju,=L(6,w)u, u=(q,p), (13)

where J is a unit symplectic operator.

The next step is to show that the linearization about the
invariant torus has a zero eigenvalue of geometric multiplic-
ity n, and algebraic multiplicity 2n, and the algebraic multi-
plicity jumps to 2n+2 if and only if condition (4) is satisfied.
The special case n=1 (periodic orbits) has been proved in
[14] and the generalization to arbitrary n follows similar
lines. The related problem of degenerate relative equilibria is
given in [15]. A sketch of the argument is given here.

Let 4:=(qd,p) and define

v )i
!a6;
Differentiate the Euler-Lagrange [Eq. (10)] with respect to 0;
for j=1,...,n; then

L(f,w)v;=0, j=1,...,n.

This construction confirms that zero is an eigenvalue of
L(6, w) of algebraic and geometric multiplicity of at least n.
Now differentiate Eq. (10) with respect to wy, €=1,...,n,

n Jd Jp aq ap Ip
-0 W =Hgq o+ Hgp o+
J=1 (90] (9w€ (?(,()(g (?wg (90@
SR W Y S
J=1 1(90]- Jw pqﬁwg pp&wg (5’05’
or with
)i
Vn+j= awj’
this gives
L(g,(l))vn_',j:JVj, j=1, sl N
Hence the v,,; for j=1,...,n are generalized eigenfunctions

of J7'L(#, w). This argument confirms that zero is an eigen-
value of algebraic multiplicity at least 2n. Using standard
Jordan chain theory, the algebraic multiplicity is 2n+2 if
there are two more generalized eigenfunctions. Indeed, it is
found that

L(69 w)v2n+l = 2;;1 anVn+j’

L(6,0)V2,2 = IV241, (14)

where n; are the components of the normal vector n. To see
that these are the correct terms, first note that Jordan chain
theory says that zero is an eigenvalue of algebraic multiplic-
ity 2n+1 if there exists a generalized eigenfunction v,,,
satisfying
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n

J_IL(Hs (1))V2n+1 = E ajvn+j7
Jj=1

for some constants ay,...,a,.
adjoint, solvability requires

Since L is formally self-

n

2 ail(ve.Jv, ) =0, for €=1,....,n,
j=1

where ((-,-)) is an inner product including integration over
the torus,

((u,v)) = jg (u(6),v(6))do,

with (-,-) a standard inner product on R>"*?. But,

<<V(’Jvn+j>> - << (?ag’Ja(l)]>> - (?w]

Hence the solvability condition is

n
al
a—+=0,

=1, ...,n,
j(?a)j

j=1
or
DI(w)a=0.

Hence if we choose a=n then we have established a precise
connection between degeneracy (4) and existence of a zero
eigenvalue of algebraic multiplicity 2n+2. The second equa-
tion of Eq. (14) follows from the fact that for linear Hamil-
tonian systems, zero is an eigenvalue of even multiplicity
(i.e., algebraic multiplicity 2n+1 implies 2n+2).

In the theory of HanBmann [11] the linear saddle-center
decouples from the torus; hence the eigenvalue zero there
also has algebraic multiplicity 2n+2 but the geometric mul-
tiplicity is n+ 1, whereas here the geometric multiplicity is
just n.

IV. NORMAL FORM THEORY

The idea is to choose new coordinates for the linear sys-
tem, and then do weakly nonlinear theory to get the nonlin-
ear normal form transverse to the torus. It generalizes the
case n=1 in [14] and is analogous to the theory for relative
equilibria in [15].

First introduce a linear change of coordinates,

[W1| |W2n+2] = [V1| e |V2n+2]T,

where T is a (2n+2) X (2n+2) matrix. T is explicitly com-
putable but its entries are not needed here. Let s;==*1 and
let s,,...,s, be the signs of the nonzero eigenvalues of
DI(w). The sign s, is determined from the top of the Jordan
chain: it is related to the sign of ((Jv,,42,vy)). The signs s;
are not important for the dynamics, but they are important
for assuring that the transformation is symplectic.

Express the general solution of linear problem (13) in the
form
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u(t) = g (W + -+ ¢, (OW, + u(t)w,, | — slil(t)w2n+2

+ SZIZ(I)WrHZ + ot Sn[n(t)WZn + slv(t)w2n+1 + o

(15)
Then to leading order the normal form is
—;j=0+ j=1,...,n,
—U—il—%Ku2+ ,
<2>1=u+ ,
Gr=sili+ o j=1, .,
u=sv+ -, (16)

where ile(w), where A from Eq. (7) is a measure of the
distance from the action hypersurface. The coefficient « in
the normal form is determined by the second derivative of
the action-frequency map

k=CRg,
where C is an explicitly computable positive constant that is
related to the absolute value of ((Jv,,,,,V1)), and & is de-
fined in Eq. (6).
The Hamiltonian function associated with the leading-
order normal form is

n
A1 1
H:Esjijz»+ull+5slvz—gf<u3+
=2

In contrast to the leading-order normal form of Hanfmann
(1), here the torus and normal direction are coupled at lead-

ing order through the term uil, the other toral directions,

L,,...,I,, have a signature {s,,...,s,} determined by the
signs of the nonzero eigenvalues of DI(w), and the coeffi-
cient of the nonlinear term « is determined by the second
derivative of the action-frequency map.

V. HOMOCLINIC BIFURCATION
AND GEOMETRIC PHASE

There are two interesting features of the solution of the
leading-order normal form: the bifurcating homoclinic orbit
and the induced geometric phase along the torus. The ho-
moclinic orbit to leading order is given by Eq. (15) with the
coefficients determined from the nonlinear normal form. For
example,

u(f) = v— 3w sech’(yr),

with ’y=%V"S1(ZOKV and v= i|K|_1V2Ki1/ao. Keep in mind
that this is only the u(¢) coefficient of w,,;(6) in Eq. (15) and
so the flow on the torus has to be added in to get the full
picture.

The geometric phase is determined by the first phase
function ¢, (¢) [coordinates have been chosen so that the de-
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FIG. 2. Schematic of the phase shift of the orbit which is ho-
moclinic to the manifold of invariant tori.

generate direction is aligned with ¢,(r)]. The geometric
phase is determined by integrating the equation
¢, (t)=u+---. With u(r) above,

3v
é1(1) = vi = —tanh(y) + &},
Y
and so the geometric part of the phase shift is

Apy=[¢)(t) - vi]Z=—6v/y. (17)

The geometric phase measures the gap—along the torus—
between the unstable manifold leaving the torus and the
stable manifold returning to the torus. The phase-space di-
mension is too high to effectively draw the picture, but a
schematic is shown in Fig. 2. This geometric phase is analo-
gous to a Hannay-Berry geometric phase [16], and general-
izes the topological angle for homoclinics connecting to pe-
riodic orbits [14,17].

VI. OVERVIEW, APPLICATION, AND PERSISTENCE

The main observation of this paper is that the action-
frequency map both determines where homoclinic bifurca-
tion of invariant tori will occur via Eq. (4), and the nonlinear
properties of the bifurcating homoclinic orbit, namely, the
coefficient k. The singular hypersurfaces where Eq. (4) is
satisfied are distinct from points where Eq. (2) is satisfied.
Hence the theory of HanBmann [12] and related work will
apply in distinctly different regions of action space.

Given a family of invariant n tori, the properties of the
homoclinic bifurcation are almost completely determined by
studying just the action-frequency map. First look for hyper-
surfaces satisfying Eq. (4). Note that such hypersurfaces are
not necessarily connected. Then compute the eigenvalues of
DI(w) on the frequency hypersurface. The signs s,,...,s,
are then the signs of the nonzero eigenvalues. Computing
second derivative (6) then gives the coefficient of the non-
linear term in the normal form. The only property which is
not given by the action-frequency map is the sign s,. But this
is obtained by a purely linear calculation as it involves an
inner product between the first eigenvector, and the top ei-
genvector of the Jordan chain.

With the addition of nonintegrable terms, by increasing
the dimension beyond 2n+2 or by introducing symmetry-
breaking terms, the theory still goes through formally, but
small divisors will be present. This will affect both the
smoothness of the action-frequency map and the persistence
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of the invariant tori. There has been much work on persis-
tence of invariant tori in the presence of degeneracy, e.g.,
[18—22] and references therein. However, in all these cases
they consider the degeneracy of the inverse map,

det[Dw(I)]=0.

With the addition of secondary nondegeneracy conditions
they are able to prove persistence of a subset of the invariant
tori. Surprisingly, persistence of invariant tori in the case of
inverse degeneracy (4) has not been considered. Hence the
precise nature of the persistence of the invariant torus with
attached homoclinic orbit found here, in the presence of per-
turbation, is an open question.

VII. EXAMPLE—TORAL DARK SOLITARY WAVES
Consider the coupled Ginzburg-Landau equations

iA,=A, +rA+alAl’A+ BIBJA,

iB,=1iaB, + r,B + B|A|*B + y|B|*B, (18)

which arise in pattern formation. In this equation A(x,7) and
B(x,t) are complex valued, and the parameters ry, ry, a, @, B,
and v are all real. Assume a # 0 and ay— 8>+ 0. The steady
equations can be characterized as a Hamiltonian system on
R®. This Hamiltonian system has a two-parameter family of
invariant two-tori (for fixed values of the external param-
eters) parameterized by the values of the actions or frequen-
cies. This family is degenerate on a codimension-one hyper-
surface in frequency space, and near this curve of degeneracy
a homoclinic orbit (bi-asymptotic to the two tori) is gener-
ated. In the spatial setting this homoclinic orbit represents a
toral dark solitary wave, generalizing classical dark solitary
waves which are bi-asymptotic to a periodic solution [23,24].

The representation of the steady equations as a
Hamiltonian system on R® proceeds as follows. Let

u=(q1,92.p1.P2.4q3-p3) With

A=q,+iqy, A,=pi+ipy, B=q3+ips,
then the steady part of Eq. (18) is equivalent to
Ju,=VH(u), ueRS,

with
H(u) = 3(p1+p3) + 371(q1 + ¢3) + 572(q3 + p3)

+3a(gi + 3 + 3Bt + @) (g3 + p3) + 5 G5 + p3)

and
00 -1 0 0 0
00 0 -1 0 0
100 0 0 0
=101 0 0 0 o0
00 0 0 0 a
00 0 0 —a 0

There is an exact toral solution
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de do
U =GO, 6@, —=w, —Z=o.
dx dx
where
cos § —sin 0
G(el,ez) = Rg @Rg @Rg, R0:= . .
! ! 2 sin @ cos 6

Percival’s variational principle gives a relation between u,
and w,

ri = i +a(¢) + (42°1+ Bl(g3)* + (p3)*] =0,

ry—awy + L)) + (g1 + A (gD + (p9)*]1=0, (19)
where uy:=(q1.43.p1.p3.43.9%).
Evaluation of actions (11) gives

11=%(7w%—a,8w2—7r1+ﬁr2),

L=55(- ,Bw% +aaw, + Bry— ar,), (20)
where 6=ay— 2. The Jacobian is

1| 3y0i —aBw, - yri + Bry —aBo,
DIl(w) = 5 [
—afw, ;aa

and so

det[DI(w)] = %%[(3 ya -2’ — aaBw, + afr, — ayr].

Setting this determinant to zero generates a parabola in the
frequency plane, for fixed values of the external parameters.
The requirements that

@2+ (g9)>>0 and (¢9*+(p)*>0

define the region where invariant two-tori exist. Substitution
into Eq. (19) gives the region of existence: tori exist for all
frequencies satisfying

S(ywi — aPaw, - yry + Bry) >0,

o(— ,Bw% +aawy+ Bri— ar,) > 0. (21)

At any point on the action hypersurface, the normal vector
n is

aa
n:C( ), C=(ld®>+4pw) "2
2Bw,

Let w be a fixed point on the frequency hypersurface and let
n be the normal vector at that point. Then the coefficient k
defined in Eq. (6) is
2

K= —

ds®

n-I(w+sn)=6a’c’w,.
s=0

The sign s, is determined by
s, =sign Trace[DI(w)],

with @ in the frequency hypersurface. The sign s; is deter-
mined by computing the six generalized eigenfunctions.
However, the sign s; does not affect the dynamics; it only
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®, I

FIG. 3. (Color online) The frequency hypersurface (left figure)
and action hypersurface (right figure) for example (20). The region
of existence of invariant two tori is the interior of outer parabola in
frequency space, and the inner parabola is the frequency
hypersurface.

affects which side of the hypersurface the homoclinic bifur-
cation takes place.

To show that the set of existing tori and singular submani-
fold are nonempty, choose some parameters, e.g.,

B=2, vy=1,

Then solutions exist for all (w;,w,) such that

a=+1, a=-1, ri=—-1, r=+1.

PHYSICAL REVIEW E 79, 066603 (2009)

2wy,>3+ w%,
and the frequency hypersurface is the parabola
2w,=3+ 11w

This curve and the bounding curve for the existence set are
shown in Fig. 3. In the left figure, the outer parabola is bor-
der of the existence region, and the inner parabola is the
curve det[DI(w)]=0. The right figure shows the image of the
singular curve in action space, and its normal vector. For
these parameter values,

1 -1
n \’m@wl), s,=+1, k=6w,.
Hence away from the point w;=0 there is a homoclinic bi-
furcation in action space near the action hypersurface deter-
mined by the normal form expression in Sec. V. For the
Ginzburg-Landau equation the homoclinic orbit is spatial
and so it is a solitary wave. Since it is bi-asymptotic as
x— * o to an invariant two-torus, it is called a toral dark
solitary wave.
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